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The normal modes of a horizontally uniform, vertically sheared flow over a sloping
bottom are considered in two active layers underneath a deep motionless third layer.
The variations of the layer thickness are assumed to be small to analyse the sixth-
order eigenvalue problem for finite-Froude-number typical for oceanic currents. The
dispersion curves for the Rossby waves and the Poincaré modes of inertia–gravity
waves (IGW) are investigated to identify the different types of instabilities that occur
if there is a pair of wave components which have almost the same Doppler-shifted
frequency related to crossover of the branches when the Froude number increases.
Simple criteria for ageostrophic instabilities due to a resonance between the IGW and
the Rossby wave because of the thickness gradient in either the lower or middle layer,
are derived. They exactly correspond to violation of sufficient Ripa’s conditions for the
flow stability. In both cases the growth rate and the interval of unstable wavenumbers
are shown to be proportional to the square root of the corresponding gradient of the
layer thickness. These types of ageostrophic instability can coexist (and with Kelvin–
Helmholtz instability). However, their role in generating unbalanced motions and
mixing processes in geophysical fluids appears limited due to small growth rates and
narrow intervals of the unstable wavenumbers in comparison to Kelvin–Helmholtz
instability.

1. Introduction
Stratified rotating flows support various types of instabilities which can be

interpreted in terms of resonances between different wave modes (Hayashi & Young
1987). Three major types of resonances between inertia–gravity waves (IGW) and
the Rossby wave modes are known for horizontally uniform, vertically sheared flows
(Sakai 1989). First, the kinetic energy of the mean flow is the most important for
Kelvin–Helmholtz (K-H) instability due to high-frequency resonances between IGW
modes at order-one Froude number. It provides mixing at small scales and has been
studied mainly in a non-rotating frame.

The available part of the potential energy is a source of baroclinic instability which
can be interpreted as vertical coupling between Rossby waves related to gradients
of the basic potential vorticity (Cushman-Roisin 1994). Because the Rossby waves
typically have low frequencies, most of these studies were done in a framework of
quasi-geostrophic dynamics at small Froude and Rossby numbers when IGW are
excluded a priori. The mechanism of this instability is most simply illustrated by the
geostrophic two-layer Phillips model where the variations of layer thickness are small
(Phillips 1954).
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An ageostrophic version of Phillips’ model (two-layer channel model on an f-
plane with large variations of the layer thickness) was used to reveal a third type
of instability (Orlanski 1968), which has been recognized as an instability caused by
resonance between IGW and Rossby modes (Sakai 1989). It was found at finite Froude
number and called the Rossby–Kelvin (R-K) instability to indicate the different types
of waves that resonate in the lowest mode. The instability occurs if there is a pair of
IGW and Rossby wave components which propagate in the opposite direction to the
basic flow and which have almost the same Doppler-shifted frequency. In the R-K
instability the Rossby waves are almost in geostrophic balance while the ageostrophic
IGW are the same as in a one-layer system. Doppler shifting matches frequencies
which would otherwise be very different.

R-K-type instability is also found in a continuously stratified model (ageostrophic
version of the Eady model). Stone (1966, 1970) found some unstable modes with
phase speed different from that of the average basic flow (note that the conventional
baroclinic instability has the same phase speed as the average basic flow). This
instability is identified by Nakamura (1988) as due to the inertial critical layer. He
showed that this unstable mode is caused by an interaction between a vorticity
mode trapped at the boundary and an IGW mode which has intrinsic frequency of
order the Coriolis parameter and is trapped in the inertial critical layer (see also
Plougonven, Muraki & Snyder 2005). Recently Molemaker, McWilliams & Yavneh
(2005) have investigated R-K-type instability in a continuously stratified model with
an emphasis on how it relates to the breakdown of balance in the neighbourhood
of loss of balanced integrability and on how its properties compare with examples
of ageostrophic anticyclonic instability of rotating, stratified, horizontally sheared
currents.

Here we consider a multi-layer ageostrophic version of Phillips’ model for spatially
uniform flow over sloping topography in a configuration with small variations of layer
thickness which allows to consider analytically all the types of instability mentioned
(Kelvin–Helmholtz, Rossby–Kelvin, baroclinic) in approximated systems of ordinary
differential equations (ODEs) with constant coefficients. The dispersion curves and
wave resonances can be analysed explicitly, which helps to distinguish ageostrophic
R-K instabilities related to a gradient of potential vorticity in each layer. In § 2, basic
equations for a two-and-half-layer system are described, Ripa’s stability conditions
are considered and the eigenproblem is formulated for linearized equations. In § 3,
different IGW modes are analysed in connection with K-H instability. In § 4, the
Rossby waves and R-K instabilities are described in detail. In § 5, examples of
transformation of dispersion curves with increasing Froude number are provided. In
§ 6, the results are summarized and discussed.

2. Mathematical formulation
2.1. The two-active-layer model

Let us consider a three-layer, inviscid, rotating fluid in a channel of width 2L

with a linearly sloping bottom. The layer densities are ρj , the depths are Hj , the
pressure field is Pj , and the velocity vector is V j = (Uj, Vj ), where j = 1, j = 2 and
j = 3 represent variables in the lower, middle and upper layer, respectively (see
figure 1). The right-hand coordinate system corresponds to the depth topography
H (X), with the X-axis directed onshore, and the Y -axis parallel to the isobath; t is
time.
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Figure 1. The three-layer baroclinic flow configuration along a sloping bottom in a channel.

First, we non-dimensionalize the variables as follows:

(X̂, Ŷ ) = (X, Y )f0/V0, t̂ = tf0, (1)

(Ûj , V̂j ) = (Uj, Vj )/V0, Ĥ j = Hj/H0, P̂j = Pj

/
ρ1V

2
0 , (2)

where V0 =
√

g′H0 is the characteristic velocity, H0 is the characteristic layer depth,
g′ = g(ρ1 − ρ2)/ρ1 is the reduced gravity, and f0 is the Coriolis parameter.

In the Boussinesq, hydrostatic, and f -plane approximations the non-dimensional
momentum and continuity equations are

∂t V j + (V j · ∇)V j + k × V j = −∇Pj , (3)

∂tHj + ∇ · (Hj V j ) = 0, (4)

where ∇ is the horizontal gradient operator, k is the vertical unit vector, and the hats
for the non-dimensional variables are dropped. Here we assume ρ1 − ρ3 � ρ1. The
pressure and layer thickness gradients are related by the hydrostatic equations:

∇(H1 + H (X)) = ∇(P1 − P2), ∇(H1 + H (X) + H2) = γ ∇(P2 − P3), (5)

where γ = (ρ1 − ρ2)/(ρ2 − ρ3). The limit γ = 0 corresponds to a widely used rigid-
lid two-layer model. Further we assume the upper layer to be infinitely deep and
motionless (P3 = 0) to analyse the coupling of the middle and lower active layers for
finite γ .

2.2. The basic state and stability conditions

We consider the basic state with horizontally uniform flows in each layer:

Uj = 0, Vj =
dPj

dX
, Hj = Hj +SjX, S1 = V −S, S2 = γV2−V, (6)

where S is the topographic slope and V =V1 − V2 characterizes the Froude number.
Further we assume V > 0 and choose the coordinates moving with the middle layer
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velocity V2. According to general stability conditions for a two-and-half-layer model
given in table 2 in Ripa (1991), this parallel flow is stable if there exists any value of
a constant a such that

(V − a)S1 < 0, aS2 > 0, F1(1 − γF2) + (1 + γ )F2 < 1, γ F2 < 1, (7)

where F1 = (V − a)2/H1, F2 = a2/H2. When S1 = S2 = 0, the first two conditions
are irrelevant, while the last two conditions in (7) can be violated for V >VKH

corresponding to the K-H instability (see § 3).
In our configuration two types of the R-K instability can be analysed independently:

one is related to the Rossby mode due to the lower-layer thickness gradient, another
is related to the Rossby mode due to the middle-layer thickness gradient. When
S1 > 0 and S2 � 0, the first two conditions give a >V , then the last two conditions
can be violated for (1 + γ )V 2 > H2, corresponding to the R-K instability described in
§ 4.1. When S1 � 0 and S2 < 0, the first two conditions give a < 0, then the last two
conditions can be violated when V 2 >H1, corresponding to R-K instability described
in § 4.2.

When S1 > 0 and S2 < 0, the first two conditions give a >V and a < 0 that cannot
be satisfied, corresponding to conventional baroclinic instability considered in § 4.3.
When S1 < 0 and S2 > 0 the first two conditions are satisfied for 0< a < V , then the
last two conditions could be violated only for K-H instability. It is an example of
when the Rayleigh criterion of opposite sign for gradients of potential vorticity in
two layers necessary for instability is not sufficient.

2.3. Linearization

The linear stability of this flow is addressed by adding infinitesimal disturbances of the
form (iuj (X), vj (X), pj (X)) exp(ikY − iωt) and linearizing. Here k is the disturbance
wavenumber and ω is the disturbance frequency (a positive imaginary part implying
instability). The linearized equations (3)–(5) are

σ1u1 − v1 + p′
1 = 0, u1 − σ1v1 + kp1 = 0, (8)

σ1(p2 − p1) + (H1u1)
′ + kH1v1 = 0, (9)

σ2u2 − v2 + p′
2 = 0, u2 − σ2v2 + kp2 = 0, (10)

σ2(p1 − p2 − γp2) + (H2u2)
′ + kH2v2 = 0, (11)

where intrinsic frequencies σ1 = ω − kV , σ2 = ω, and ′ denotes d/dX. The system (8)–
(11) is a sixth-order eigenvalue problem to be solved with the boundary conditions
uj = 0 at X = ± L to obtain a set of normal modes which are orthogonal to each
other in an appropriate norm. From (8) and (10) we can express (uj , vj ) via pj as

fjuj = σjp
′
j − kpj , fjvj = p′

j − σjkpj , fj = 1 − σ 2
j . (12)

Then from (9) and (11) we obtain two coupled second-order ODEs for pj (X):

f1(p1 − p2) + (H 1 + S1X)(k2p1 − p′′
1 ) − S1p

′
1 = − k

σ1

S1p1, (13)

f2(γp2 + p2 − p1) + (H 2 + S2X)(k2p2 − p′′
2 ) − S2p

′
2 = − k

σ2

S2p2, (14)

with the boundary conditions obtained from (12):

σjp
′
j = kpj at X = ±L. (15)
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The system (13)–(15) describes four sets of the IGW and two sets of the topographic
Rossby wave, depending on the Froude number, V , the depth ratio, H 1/H 2, the density
ratio, γ , the channel width, L, and two depth gradients, Sj . Generally, eigenvalues
and eigenfunctions can be found numerically by discretizing the X-interval. In order
to analyse different modes and their resonances explicitly, we further assume that the
changes in thickness of both layers are small |Sj | � 1.

3. Inertia–gravity modes
The Rossby modes are absent if S1 = S2 = 0, i.e. V = S = γV2; then only K-H

instability is possible due to vertical shear. In this case the coefficients in coupled
ODEs (13)–(14) become constant:

f1p1 + H 1(k
2p1 − p′′

1 ) = f1p2, f2p1 = (γ + 1)f2p2 + H 2(k
2p2 − p′′

2 ), (16)

and we seek the solution to (16) in the form of periodic Poincaré modes satisfying
(15)

pj = Zj sin(αX+φj )+c.c., α =
πm

2L
, tan{φj +[1−(−1)m]π/4} =

σjα

k
, (17)

where Zj are amplitudes, m is the modal number, and c.c. means complex conjugate.
(Here we exclude from consideration the boundary-trapped Kelvin modes of IGW
analysed by Sakai (1989)). Then from (16) we obtain the matrix equation for (Z1, Z2)
and its determinant has the form of the forth-order algebraic equation corresponding
to the boundary of Ripa’s third condition (7) for Fj = (σ 2

j − 1)/Qj :

1 + γ

(
σ 2

1 − 1
)(

σ 2
2 − 1

)
Q1Q2

=
σ 2

1 − 1

Q1

+ (1 + γ )
σ 2

2 − 1

Q2

, Qj = Hj (k
2 + α2). (18)

Without vertical shear and over a flat bottom, V = S =0, we have σ1 = σ2 = ω;
then (18) describes four branches of a neutral IGW for two internal modes, ω2

n = 1 +
(k2 + α2)C2

n:

C2
1 =

1

2γ
[H 2 + (1 + γ )H 1 +

√
D], C2

2 =
2H 1H 2

H 2 + (1 + γ )H 1 +
√

D
, (19)

where D = (H 2 + (1 + γ )H 1)
2 − 4γH 1H 2. The internal-mode speed ratio depends on

µ:

C1

C2

=

√
2

µ
(1 +

√
1 − µ) − 1, µ =

4γ δ(1 − δ)

(1 + γ δ)2
, (20)

where δ = H 1/(H 1 +H 2) is the depth ratio. We see that µ � 1 when either γ � 1 (the
limit of a rigid-lid upper interface), or γ � 1 (the limit of an inactive middle layer),
or δ → 1 (small middle-layer thickness), or δ � 1 (small lowe-layer thickness). In all
these cases the first internal–gravity mode propagates much faster than the second
mode (C1 � C2).

When analysing the flow instability for V > 0, we use an asymptotic expansion in
γ assuming ω = ω0 + γω1 + · · · . At the leading order, setting γ = 0 in (18), we obtain

ω2
0(Q1 + Q2) − 2ω0kV Q2 + k2V 2Q2 − Q1 − Q2 − Q1Q2 = 0, (21)
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which gives the condition of K-H instability in the rigid-lid two-layer system for the
gravest mode with α � 1 when Qj ≈ k2Hj :

V 2 > H 1 + H 2 +
(H 1 + H 2)

2

H 1H 2k2
, ω0i =

√
k2V 2H 1H 2

(H 1 + H 2)2
− k2H 1H 2

H 1 + H 2

− 1, (22)

where the growth rate ω0i increases with the wavenumber k. One can see that in the
short-wave limit this instability condition V 2 > H 1 + H 2 corresponds to violation of
Ripa’s third condition (7): F1 + F2 < 1 for γ = 0.

Taking into account the next order in γ , we find that this high-frequency instability
is possible only for the Froude number V > VKH where

VKH =

√
H 1 + H 2 − γH

2

2

H 1 + H 2

+ O(γ 2). (23)

4. The Rossby waves and ageostrophic R-K instability
4.1. The Rossby mode due to the lower-layer thickness gradient

When only S2 = 0, (13)–(15) becomes the fifth-order eigenvalue problem. Owing to
the smallness of S1 the topographic Rossby wave branch can be described in the
quasigeostrophic approximation, assuming f1 = f2 ≈ 1 to filter out the IGW, and
neglecting small terms proportional to S1 in the left-hand side of (13) to obtain the
equation with constant coefficients

p1 − p2 + H1(k
2p1 − p′′

1 ) = −S1p1

c1

, (24)

where c1 = ω/k − V . Then the solution in the form (17) gives

c1 = −S1

1 + γ + Q2

γ + Q2 + Q1(1 + γ + Q2)
. (25)

Thus, the Doppler-shifted intrinsic phase speed of the Rossby wave, c1, is small
and to consider its resonance with the IGW mode we take into account only the
leading-order correction to f2 = 1 − k2(V + c1)

2 ≈ 1 − k2V 2 − 2k2V c1 in (14):

(1 − k2V 2 − 2k2V c1)(p1 − γp2 − p2) = H2(k
2p2 − p′′

2 ). (26)

Then seeking the solution in the form (17) to (24) and (26) gives a quadratic equation
for c1 which describes the branches of the Doppler-shifted Rossby wave and IGW in
the vicinity of ω ≈ kV :

A1c
2
1 − B1c1 = S1[(1 + γ )(1 − k2V 2) + Q2], c1 =

B1 ±
√

D1

2A1

, (27)

A1 = 2k2V (γ + Q1 + γQ1), B1 =Q2 +Q1Q2 + (Q1 + γ + γQ1)(1 − k2V 2), (28)

D1 = B2
1 + 8k2V S1(Q1 + γ + γQ1)[Q2 + (1 + γ )(1 − k2V 2)]. (29)

The two branches are able to cross in the vicinity of the resonant wavenumber k1

given by the condition B1 = 0, which can be written as a quadratic equation for
K2

1 = k2
1 + α2:

H 2K
2
1 + H 1H 2K

4
1 +

[
γ + (1 + γ )H 1K

2
1

][
1 −

(
K2

1 − α2
)
V 2

]
= 0. (30)
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In agreement with violation of Ripa’s third stability condition (7) for a = V , such a
resonant wavenumber exists when AK ≡ (1 + γ )V 2 − H 2 > 0:

K2
1 =

BK +
√

DK

2H 1AK

, (31)

BK = (1 + α2V 2)(1 + γ )H 1 + H 2 − γV 2, DK = B2
K + γH 1AK (1 + α2V 2). (32)

The resonance appears at infinitely large wavenumber when AK becomes positive
and K1 decreases as V increases further.

The imaginary part of c1 could be non-zero within the unstable wavenumber
interval k1 − κm < k <k1 + κp defined by D1(k1 − km) = D1(k1 + kp) = 0 if

D1(k1) = −8k2
1K

2
1H 2V S1 < 0, (33)

which is possible only if V S1 > 0, i.e. when the Rossby wave propagates upstream
in the lower layer in agreement with violation of Ripa’s stability conditions (7) and
the analysis by Sakai (1989). The corresponding R-K instability has the maximum
growth rate proportional to

√
S1/V :

ωi = k1c1i =

√
S1H 2

2V

K1

γ + (1 + γ )H 1K
2
1

, (34)

which confirms the validity of neglecting the terms proportional to S1 	 c2
1 in

the left-hand side of (13). One can see from (27)–(29) that the interval of unstable
wavenumbers κp+κm is proportional to

√
S1V and κp+κm decreases when V increases.

4.2. The Rossby wave due to the middle-layer thickness gradient

When S1 = 0 and S2 < 0, the phase speed of the topographic Rossby wave is also
small due to the smallness of |S2|. To consider its resonance with the IGW mode we
approximate f1 = 1 − k2(c − V )2 ≈ 1 − k2V 2 + 2k2V c, f2 = 1 − k2c2 ≈ 1, and neglect
small terms proportional to S2 in the left-hand side of (14), taking into account only
the leading order in c. Then the solution to (13)–(14) in the form (17) gives a quadratic
equation for c similar to (27)–(29) which describes here branches of the Rossby wave
and Doppler-shifted IGW in the vicinity of ω = 0. These branches are able to cross
in the vicinity of the resonant wavenumber k2, which can be written as a quadratic
equation for K2

2 = k2
2 + α2:

(1 + γ )H 1K
2
2 + H 1H 2K

4
2 +

(
γ + H 2K

2
2

)[
1 −

(
K2

2 − α2
)
V 2

]
= 0. (35)

In agreement with violation of Ripa’s third condition (7) for a =0, such a resonant
wavenumber exists when V 2 > H 1. The imaginary part of c at k = k2 is non-zero
if V S2 < 0, i.e. when the Rossby wave in the middle layer propagates downstream
relative the flow in the lower layer. The corresponding R-K instability has maximum
growth rate proportional to

√
−S2/V :

σi = k2ci =

√
−S2H 1

2V

K2

γ + H 2K
2
2

. (36)

In this case, the interval of unstable wavenumbers is proportional to
√

−S2V .
Both types of R-K instability have the same resonant wavenumbers, k1 = k2, and

growth rates when H 1 = H 2, S1 = − S2, and γ = 0, corresponding to the configuration
considered by Sakai (1989). Note that the first Poincaré mode of R-K instability
is seen in his figure 6 for the Froude number F > 0.7, defined as F = V/2C2 with
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C2 =
√

H 1/2, which agrees well with the condition V >
√

H 1 obtained here. Such
instabilities are similar to the topographic Rossby wave–IGW instability in spatially
localized gravity currents along a slope considered by Meacham & Stephens (2001)
as well as to the subsynoptic-scale baroclinic instability identified by Yamazaki &
Peltier (2001).

4.3. Geostrophic baroclinic instability

Finally, when the thickness varies in both layers, two types of ageostrophic R-K
instability can coexist (see § 5). In addition, coupling between two Rossby wave
branches provides baroclinic instability if S1V > 0 and S2V < 0, which have been
intensively studied in the past in the limit of low frequency |σ | � 1 and small Rossby
number kV � 1. In this case filtering out the IGW by assuming f1 	 f2 	 1 and
neglecting small terms proportional to either S1 or S2 in the left-hand side of (13)–
(14) gives

p1 + H1(k
2p1 − p′′

1 ) +
S1p1

c1

= p2, (1 + γ )p2 + H1(k
2p2 − p′′

2 ) +
S2p2

c2

= p1. (37)

Seeking the solution to (37) in the form (17) gives a quadratic dispersion equation:

c(c−V )[(γ +Q2)(1+Q1)+Q1]+(c−V )S2(1+Q1)+cS1(1+γ +Q2)+S1S2 = 0. (38)

Such baroclinic instability arises due to a resonance between the Rossby waves related
to the thickness gradient in the middle and lower layers, analysed in the three-layer
quasi-geostrophic model in detail by Pichevin (1998).

In particular, the stability characteristics of the pure baroclinic Swaters’ mode for
a wedge flow configuration along the slope can be obtained from (38) in the limit of
γ → 0, Q1 → 0(H 1 � H 2) and S2 = − V :

Q2c
2 − (V − S1)(1 + Q2)c + V 2 − V S1 = 0, (39)

c = 2V
1 ±

√
1 − χ

χ(1 + Q2)
, χ =

4V Q2

(V − S1)(1 + Q2)2
. (40)

Here the instability condition χ > 1 coincides with (3.12) of Mooney & Swaters (1996)
when S1 � V , while the growth rate and the interval of unstable wavenumbers are
also proportional to

√
S1 as for the R-K instability considered above.

5. Transformation of dispersion curves
In order to illustrate how the dispersion curves evolve when vertical shear increases,

while the changes in thickness of both layers remain small, |Sj | � 1, we neglect only
small terms proportional to either S1 or S2 in the left-hand side of (13)–(14) and seek
the solution in the form (17). Then we obtain the matrix equation M · Z= 0 where

M11 = f1 + Q1 +
kS1

σ1

, M12 = −f1,

M21 = −f2, M22 = (1 + γ )f2 + Q2 +
kS2

σ2

,

⎫⎪⎪⎬
⎪⎪⎭ (41)

so that the determinant of (41) can be written as

σ1σ2

k2
[(γf2+Q2)(f1+Q1)+f2Q1]+

σ1S2

k
(f1+Q1)+

σ2S1

k
[(1+γ )f2+Q2] = −S1S2. (42)

Examples of dispersion curves calculated for increasing Froude number 0 � V � 1
from (42) for H 1 = H 2 = 0.5, γ =1, S1 = −S2 = 0.2, α = 1 are shown in figure 2. The
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Figure 2. The real part of the phase velocity for the second IGW modes (downstream
propagating, dashed and upstream propagating, solid curves) and the Rossby wave modes
(downstream propagating, dotted and upstream propagating, dash-dotted curves) depending
on the wavenumber k according to (17) for H 1 = H 2 = 0.5; γ =1; S1 = −S2 = 0.2; α = 1 and six
values of V . The growth rates (multiplied by 10) corresponding to crossover of the branches
are shown for the baroclinic instability (thin solid line in (b) and (c)), R-K instability (thin
solid and dashed lines in (d), (e), (f )), and K-H instability (thin dotted line in (f )).

phase speed cr is shown for the second IGW modes (downstream propagating,
dashed line, and upstream propagating, solid line) as well as for the upstream-
propagating Rossby wave, dash-dotted line, related to S1 > 0 in the lower layer, and
the downstream-propagating Rossby wave, dotted line, related to S2 < 0 in the middle
layer.

When V = 0 (figure 2a), the phase speed of topographic Rossby waves is much
smaller than that of IGW modes. When V = S1 (figure 2b), the conventional baroclinic
instability has the maximum growth rate given by (38) at k ≈ 1 due to resonance
between Doppler-shifted Rossby waves within the interval of unstable wavenumbers
0 � k � 1.8. When V = 0.4 (figure 2c), the upstream-propagating Rossby wave has
larger Doppler shift, so that the baroclinic instability growth rate and the interval of
unstable wavenumbers are much smaller.

When V =0.6 >
√

H 2/(1 + γ ) = 0.5 (figure 2d), ageostrophic R-K instability
becomes possible due to a resonance between the Rossby mode related to the lower-
layer thickness gradient and the downstream-propagating IGW with the maximum
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growth rate described by (34), while the Doppler shift becomes too large for a

resonance between the Rossby waves. When V = 0.8 >
√

H 1 = 0.7 (figure 2e), another
R-K instability becomes possible due to a resonance between the Rossby mode related
to the middle-layer thickness gradient and the Doppler-shifted upstream-propagating
IGW with the maximum growth rate given by (36); it coexists here with the first R-K
instability in a more narrow interval of unstable wavenumbers.

Finally, when V = 1 (figure 2f ), K-H instability becomes possible for k > 6 in
agreement with (23); it coexists here with both types of the R-K instabilities which
unstable wavenumber intervals become to overlapping.

6. Discussion and conclusions
A multi-layer ageostrophic version of Phillips’ model over sloping topography with

small variations of the layer thickness allows consideration of analytically different
types of instability (Kelvin–Helmholtz, Rossby–Kelvin, baroclinic) in horizontally
uniform flows. The dispersion curves for the Rossby waves and IGW are investigated
for a two-and-half-layer configuration to identify different instabilities related to
crossover of the branches when the Froude number increases. Simple criteria for R-
K-type ageostrophic instabilities are found: either (1 + γ )V 2 > H 2 due to a resonance
between the IGW modes and the Rossby wave when V S1 > 0, or V 2 > H 1 due to a
resonance with the Rossby wave when V S2 < 0. They exactly correspond to violation
of sufficient conditions for the flow stability (Ripa 1991). In both cases the growth rate
(and the interval of unstable wavenumbers in the vicinity of the resonant wavenumber)
are shown to be proportional to the square root of the corresponding gradient of the
layer thickness.

As mentioned by Sakai (1989), ageostrophic instabilities in horizontally sheared
flows can be interpreted in the present context as resonance between different
Rossby, IGW, and trapped Kelvin modes (e.g. Griffiths, Killworth & Stern 1982; Ford
1993; McWilliams, Molemaker & Yavneh 2004). In such cases, the waves interact
horizontally in contrast to the vertical interaction in the R-K instability discussed
above. However, even for order-one Rossby number, the growth rates of ageostrophic
instabilities in horizontally sheared flows are typically quite small (less than 5 % of f ).

The dispersion curves demonstrate that R-K types of ageostrophic instability
related to the thickness gradient in different layers can coexist together (and with
Kelvin–Helmholtz instability) and their growth rates may exceed the growth rates of
conventional baroclinic instability (figure 2). Nevertheless, the growth rates of R-K
instabilities are within 10 % of f, and are much smaller than the growth rates of
K-H instability and their intervals of unstable wavenumbers are much narrower.
Such inefficiency of resonances between the Rossby and IGW modes in generating
substantial unbalanced motions in varying baroclinic flows is consistent with the
small-Rossby-number asymptotic analysis of Zeitlin, Reznik & Ben Jelloul (2003),
who demonstrated a decoupling of balanced and imbalanced motions for long times,
and with the astonishing persistent of balance demonstrated by McIntyre & Norton
(2000) in the shallow-water model on a hemisphere and by Dritschel & Viudez (2007)
in baroclinically unstable stratified flows.

Further investigations are needed to clarify finite-amplitude forms of ageostrophic
instabilities and their relation to the breakdowns of balance in the agradient velocity
model for finite Froude number (Sutyrin 2004) and in anticyclonically sheared flows
for finite Rossby mumber (Molemaker et al. 2005).
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